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Abstract

A well-known deficiency of the classical theory of elasticity is that it does not predict dispersive Rayleigh-wave

motions at any frequency. This contradicts experimental data and predictions of the discrete particle theory (atomic-

lattice approach) for high frequencies. The present work is intended to explore whether the elastic couple-stress theory

with micro-structure can overcome the deficiency of the classical theory. Our analysis shows indeed that Rayleigh waves

propagating along the surface of a half-space are dispersive at high frequencies, a result that can be useful in appli-

cations of high-frequency surface waves where the wavelength is often of the micron order. Provided that certain re-

lations hold between the various micro-structure parameters entering the theory employed here, the dispersion curves of

these waves have the same form as that given by previous analyses based on the atomic-lattice theory. In this way, the

present analysis gives means to obtain estimates for micro-structure parameters of the couple-stress theory. Besides the

Rayleigh-wave results reported here, basic theoretical results for the kinetic energy and momentum balance laws in

micro-structured media with couple-stress effects are derived and presented.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The present work is concerned with Rayleigh-type surface wave propagation in a material with micro-

structure. To explain dispersion phenomena at high frequencies (small wavelengths) occurring in practical
situations (see e.g. Gazis et al., 1960; White, 1970; Farnell, 1978) and therefore to circumvent the deficiency

of the conventional elasticity theory (which does not predict dispersion of Rayleigh waves at any fre-

quency), the problem is attacked with the couple-stress theory of elasticity with micro-structure. Indeed, it

is expected that material micro-structure will be an important factor in the propagation of high-frequency

surface waves often encountered in electronic-device applications, since the frequencies are on the order of

GHz (or even greater) and therefore wavelengths on the micron order may appear. The theory employed
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here falls into the category of generalized continuum theories and is a particular case of the general ap-

proaches of Mindlin (1964) and Green and Rivlin (1964). In these theories, the basic idea consists of en-

dowing each point of a continuum with an internal displacement field, which is expanded as a power series

in internal coordinate variables. The lowest-order theory is obtained by retaining only the first (linear) term.
As is well-known, ideas underlying the couple-stress linear theory of elasticity were advanced first by Voigt

(1887) and the brothers Cosserat and Cosserat (1909), but the subject was generalized (e.g. including inertia

effects) and reached maturity only with the aforementioned works of Mindlin and Green/Rivlin. In addi-

tion, Kr€ooner (1963) gave physical aspects pertinent to crystal lattices and a non-local interpretation of the

theory.

It is noted that earlier application of the couple-stress elasticity theory, mainly on quasi-static problems

of stress concentration, met with success providing solutions more adequate physically than classical-

elasticity solutions (see e.g. Mindlin and Tiersten, 1962; Weitsman, 1965, 1967; Day and Weitsman, 1966;
Bogy and Sternberg, 1967a,b; Lakes, 1982). Extensive work employing couple-stress theories, as well as

related strain-gradient theories, on elasticity and plasticity problems is also continued in recent years (see

e.g. Papamichos et al., 1990; Anderson and Lakes, 1994; Fleck et al., 1994; Vardoulakis and Sulem, 1995;

Lakes, 1995; Wei and Hutchinson, 1997; Huang et al., 1997; Chen et al., 1998; Georgiadis, 2000; Lubarda

and Markenscoff, 2000; Bardet and Vardoulakis, 2001; Amanatidou and Aravas, 2001). In particular,

Huang et al. (1997) provided solutions to interesting crack problems, Lubarda and Markenscoff (2000)

derived general conservation laws for the couple-stress elasticity theory, and Bardet and Vardoulakis (2001)

discussed the importance of couple-stresses in granular media.
In the present work, although complexity of the theory has been kept at a minimum (by retaining a

restricted number of material parameters), a micro-inertia term was included (in a rigorous manner) because

previous experience with related wave-propagation problems considered through the dipolar gradient

theory (Georgiadis et al., 2000) shows that this term is indeed important at high frequencies and including it

in the formulation of the problem gives, in fact, dispersion curves that mostly resemble with the ones

obtained by atomic-lattice considerations. It is also noticed that no such couple-stress theory with micro-

structure was proposed up to now to deal with Rayleigh-wave motions. Recently, however, the dipolar

gradient theory without couple-stress effects was employed to study the same problem (Georgiadis et al.,
2002) and some other wave-propagation problems (Vardoulakis and Georgiadis, 1997; Georgiadis and

Vardoulakis, 1998; Georgiadis et al., 2000). Finally, we emphasize that contrary to quasi-static couple-

stress approaches, which do not include explicitly the size of the material unit cell (micro-medium) in the

formulation of the problem, the present approach fully takes into account this intrinsic material length by

appropriately considering a micro-inertia term in the balance of angular momentum. Moreover, the present

analysis provides means to estimate the relation between the characteristic material length 2h and the so-

called couple-stress modulus g (which is the coefficient of the rotation gradient, in the strain-energy density

expression, and is an additional––to the standard Lam�ee constants––material parameter in the couple-stress
theory). This, in general, can be obtained through comparisons of dispersion curves that can be obtained in

the spirit of the present analysis with dispersion curves given either by experiments or atomic-lattice cal-

culations.

Another important notice pertains to the relevance of the couple-stress theory in modeling Rayleigh-

wave motions. Indeed, the physical mechanism of the Rayleigh-wave motions (as this mechanism is re-

vealed, e.g. in the experimental work of Dally and Thau, 1967) suggests that there is a much stronger shear

contribution than a dilatational one, and therefore one may expect that considering pronounced shear

effects in the material response (as is the effect of the gradient of rotation and the associated effect of non-
collinear dipolar internal forces resulting in couples that are included in the present formulation) most

properly simulates the phenomenon of Rayleigh waves.

In our analysis, displacement potentials of the Lam�ee type and two-sided Laplace transforms in the

complex domain are employed. Results are then derived through numerically solving the dispersion
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equation by techniques of root bracketing and root finding with bisection (Brent�s method––see e.g. Press
et al., 1986). Here also, besides the main analysis on Rayleigh waves, a development of basic theoretical

results concerning the kinetic energy and momentum balance laws in materials with micro-structure and

couple-stress effects is provided.
Before presenting our own results, we would like to discuss briefly two related studies published before

on the subject of dispersive Rayleigh waves. The first study (Suhubi and Eringen, 1964) develops and

applies the theory of micro-polar elasticity. This theory is more general than the one employed here but,

also, much more complicated since it involves 18 material constants (in its isotropic linear version) and the

present theory involves only four material constants (see Eq. (31) below). The work by Suhubi and Eringen

(1964) on Rayleigh waves, however, does not employ explicitly the size of the unit cell (intrinsic material

length) nor present any dispersion curve. Also, they reached the final dispersion equation through some

approximation. Finally, in both the general Mindlin–Green–Rivlin theory and the simpler Eringen–Suhubi
theory, the large number of material constants prevents their applicability to practical problems and poses

difficulties in physically interpreting and measuring all these constants.

The second study (Ottosen et al., 2000) employs the linear couple-stress theory without micro-structure.

The absence of considerations regarding micro-structure (i.e. ignoring the micro-inertia term) in the latter

work is the main difference with the present work. Of course, ignoring the micro-structure in this way

deprives one to extract any relation between the couple-stress modulus g and the intrinsic material length h.
Besides that, ignoring the micro-structure is a simplification in any event. As explained below (see relative

comments immediately after Eq. (25)), the difficulty with the non-objectivity of the stress tensor (the non-
objectivity is due to the micro-inertia term and the body-couple field) can be circumvented even in the

general transient case and be completely eliminated in the specific time-harmonic case considered here to

analyze the Rayleigh waves. Thus, use of the complete theory has no danger of ill-posedness in the problem

considered here. In addition, the results given in Ottosen et al. (2000) show that the Rayleigh-wave velocity

exceeds the shear-wave velocity for a rather wide range of wavenumber values, as the frequency increases.

As these authors admit, this is a physically questionable result showing that the couple-stress theory

without micro-structure is not so successful in analyzing Rayleigh waves. On the contrary, the present

analysis is able to control the form of dispersion curves by properly adjusting the values of the couple-stress
modulus g in relation with the intrinsic material length h. Finally, the work by Ottosen et al. (2000) follows
a different procedure than ours in deriving the dispersion equation. For instance, they do not use the

analysis of Muki and Sternberg (1965), who elucidated the issue of boundary conditions in plane-strain

problems of couple-stress elasticity. As a consequence, Ottosen et al. (2000) work with five boundary

conditions instead of the three boundary conditions pertinent to the plane-strain case. This complicates

their solution procedure. Also, they do not present dispersion curves. Instead, it is shown here that deriving

dispersion curves is important because these may serve for comparisons with experimental results and/or

atomic-lattice results.

2. Basic concepts and equations

In this section we briefly give the basic ideas and equations of the couple-stress theory of elasticity with

the effects of micro-structure and inertia/micro-inertia. The theory employed here is a particular case of

Form III in the general Mindlin�s (1964) approach. Nevertheless, we chose to present an alternative ap-

proach to Mindlin�s variational approach. Indeed, our derivation of basic results relies on the momentum

balance laws, which––in our opinion––provide more physical insight. It should also be mentioned that

versions of the couple-stress theory were introduced by, among others, Mindlin and Tiersten (1962), Koiter

(1964), Weitsman (1965), Muki and Sternberg (1965), and Mindlin and Eshel (1968). However, the latter
formulations do not include inertia and micro-inertia effects since they are of quasi-static character. As a
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consequence, the size of the material cell is not explicitly included in the governing equations of these

approaches and of other recent approaches of quasi-static character. In these analyses, rather, a charac-

teristic length appears in the governing equations only through the ratio ðg=lÞ, where g is the couple-stress

modulus (having dimensions of [force]) and l is the standard shear modulus of the material. Indeed, the
ratio ðg=lÞ has dimensions of [length]2. As will become apparent below, it is only the dynamic analysis that
explicitly accounts for the size of the material unit cell (granule). Of course, the ratio ðg=lÞ also appears

within the dynamic analysis, which therefore may allow for an interrelation of the two characteristic lengths

mentioned above.

The point of departure is considering a generalized continuum with material particles (macro-volumes),

behaving like deformable bodies. This behavior can easily be realized if such a macro-volume is viewed as a

collection of sub-particles (see Fig. 1). It is further assumed that internal forces (called dipolar forces by

Green and Rivlin (1964) and double forces by Mindlin (1964)) are developed between the sub-particles (see
Fig. 2). Although each pair of the dipolar forces has a zero resultant force, it gives generally a non-zero

moment and therefore gives rise to stresses on a surface called couple-stresses. This means that a surface

element may transmit, besides the usual force vector, a couple vector as well. In this way, the Euler–Cauchy

stress principle of classical (monopolar) continuum mechanics is augmented by considering additional

couple-tractions. One can interpret physically the couple-stresses as created by frictional couples resisting

the relative rotation of the grains (sub-particles). We note that examples of force systems of the dipolar

collinear or non-collinear type are given by Fung (1965, p. 304). Also, it is emphasized that although the

dipolar forces are self-equilibrating they produce generally non-vanishing stresses, the dipolar stresses.
Here, we consider only couple-stress effects and, accordingly, we have assumed that only the anti-symmetric

part of the dipolar forces contributes to the stress field. Compatible with this assumption is the choice of a

form of the strain-energy density (cf. Eq. (31) below) that depends upon the strain and the gradient of

rotation, but does not depend upon the gradient of strain.

2.1. Kinetic energy and momentum balance laws

A typical material particle occupies a volume V (material volume). Each sub-particle (micro-medium) has

a mass mP ðP ¼ 1; 2; . . .Þ, whereas the mass center of a typical sub-particle has coordinates xP or xPi

ði ¼ 1; 2; 3Þ with respect to a Cartesian coordinate system xj ðj ¼ 1; 2; 3Þ. The volume of the material

particle (macro-medium) has a total mass m ¼
P

mP , where summation is understood over P from 1 to the

number of sub-particles comprising the macro-medium. The mass center of the material particle is given as

c ¼
P

mPxP

m
¼

R
V xdm
m

: ð1Þ

The quantities
P

mPxPi and
P

mPxPixPj are, respectively, the first and second moments of mass. We also

define the relative positions of sub-particles

Fig. 1. A continuum with micro-structure. A material particle is composed by sub-particles.
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�xxP ¼ xP � c: ð2Þ
Then, in view of (2), the second moment of mass takes the formX

mPxPixPj ¼ mcicj þ
X

mP�xxPi�xxPj: ð3Þ

From Eq. (3) next, differentiating w.r.t. time and by taking also into account that m _cc ¼
P

mPvP andP
mP�vvP ¼ 0 (the latter equality actually means that the �internal velocities� of the sub-particles do not

contribute to the linear momentum––see below for the proof), one obtainsX
mPxPivPj ¼ mci _ccj þ

X
mP�xxPi�vvPj; ð4Þ

where ð_Þ � Dð Þ=Dt is the material time-derivative, vPj � _xxPj and �vvPj � _�xx�xxPj.

The simplest possible mode of internal motion is now assumed, i.e. the linear approximation

�vvPj ¼ vjk�xxPk ðk ¼ 1; 2; 3Þ; ð5Þ

where vjk can be called dipolar velocities. These can be considered the counterparts of the velocity gradients

okvj (with oið Þ � oð Þ=oxi) describing the rates of deformation of the �network� of lines connecting the mass
centers of the sub-particles. In the same manner, one can introduce higher-order multipolar velocities by

writing �vvPj ¼ vjk�xxPj þ vjk‘�xxPk�xxP‘ þ � � �, with ð‘ ¼ 1; 2; 3Þ, if the internal motions were to be described in greater
detail. However, in doing this, a much more complicated theory results than the dipolar theory. That theory

will also involve tripolar, quadrupolar and so on, velocities and forces. It is obvious that the increased

complexity of such a theory does not hold much hope for treating practical problems.
Further, from Eqs. (4) and (5), one obtainsX

mPxPivPj ¼ mci _ccj þ Iikvjk; ð6Þ

where

Iik ¼
X

mP�xxPi�xxPk: ð7Þ

Eq. (7) shows that the quantities Iik depend upon the �arrangement� of the masses of sub-particles within the
volume of the material particle.

In view of the above, the kinetic energy of the material particle with volume V is decomposed now as

T ðV Þ � 1

2

X
mPvPivPi ¼

1

2
m _cci _cci þ

1

2
Ijkvijvik; ð8Þ

Fig. 2. Monopolar (external) and dipolar (internal) forces acting on an ensemble of sub-particles in a material with micro-structure.

The anti-symmetric part of the dipolar forces gives rise to couple-stresses.
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or, equivalently (due to (3), (5) and (7)), as

T ðV Þ ¼ 1

2
m _cc � _ccþ 1

2

Z
V

�vv � �vvdm: ð9Þ

Finally, we consider the case of a homogeneous continuum with couple-stresses. The assumption of

homogeneity is a rather standard one in recent studies applying the Mindlin–Green–Rivlin theory to
practical problems and implies that the relative deformation (i.e. the difference between the macro-dis-

placement gradient and the micro-deformation––cf. Mindlin, 1964) is zero and also that the micro-density

does not differ from the macro-density. The continuum is composed wholly of unit cells having the form of

cubes with edges of size 2h (h is therefore a characteristic dimension) and has mass density q. Then,
compatible with couple-stress effects is taking the material particles as �rigid� so that the dipolar velocity vij

above is replaced by an intrinsic angular velocity. In view of the above, the geometrically linear theory gives

the following expression for the kinetic-energy density (kinetic energy per unit macro-volume)

T ¼ 1

2
q _uui _uui þ

qh2

3
_xxi _xxi; ð10Þ

where ui are the components of the displacement of the material particle, xi � ð1=2Þeijkojuk is the rotation

vector with eijk being the permutation symbol, and indicial notation is understood.

Next, we consider the linear and angular momentum of the material particle. First, the linear momentum
of a macro-volume V (ensemble of a number of micro-media) of the material is written as

L �
Z

V
vdm ¼

Z
V
_xxdm; ð11Þ

which by virtue of (1) becomes

L ¼ m _cc: ð12Þ
As promised before, we now prove that

R
V �xxdm ¼ 0 and, therefore, that the �internal velocities� do not

contribute to the linear momentum, i.e.
R
V �vvdm ¼ 0. The proof is simple and runs as follows: cm�

c
R
V dm ¼ 0 ()

R
V xdm�

R
V cdm ¼ 0 ()

R
V ðx� cÞdm ¼ 0 ()

R
V �xxdm ¼ 0.

In addition, the angular momentum about the coordinate origin is written as

H½0� �
Z

V
ðx� vÞdm ¼

Z
V
½ðcþ �xxÞ � v�dm ¼ c�

Z
V
vdm þ

Z
V
ð�xx� vÞdm � ðc� LÞ þH½c�; ð13Þ

where H½c� denotes the angular momentum about the mass center of the material particle.

As for the forces acting on the material particle and the sub-particles, along with the resultant force

F ¼
P

FP , the moments Fij ¼
P

FPi�xxPj, Fijk ¼
P

FPi�xxPj�xxPk, etc. can be considered so that, by virtue of (5), the

mechanical power is written as M ¼
P

FPivPi ¼ Fi _cci þ Fijvij þ Fijkvijk þ � � �. In this way, the so-called multi-

polar forces ðFij; Fijk; . . .Þ are introduced as coefficients representing higher-order forces in the expansion of

the mechanical power M.

Finally, in view of the foregoing discussion, the momentum balance laws for a control volume (consisting
of a number of macro-media) of the body can easily be derived. Indeed, for a control volume CV with

surface S, the balance laws for the linear and angular momentum within the geometrically linear theory readZ
S
T ðnÞ

i dS þ
Z
CV

Fi dðCVÞ ¼
Z
CV

q€uui dðCVÞ; ð14Þ

Z
S

xjT
ðnÞ
k eijk

�
þ M ðnÞ

i

�
dS þ

Z
CV

ðxjFkeijk þ CiÞdðCVÞ

¼
Z
CV

qxj€uukeijk dðCVÞ þ
Z
CV

qh2

3
oj€uukeijk dðCVÞ; ð15Þ
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where T ðnÞ
i is the surface force per unit area (force traction), Fi is the body force per unit volume, M

ðnÞ
i is the

surface moment per unit area (couple traction), Ci is the body moment per unit volume, ð_Þ denotes now
oð Þ=ot, and xj are the components of the position vector of each material particle with elementary volume

dðCVÞ. The second term in the RHS of (15) represents the effect of micro-inertia.

2.2. Stresses, equation of motion and constitutive relations

Next, pertinent force-stress and couple-stress tensors are introduced by considering the equilibrium of the

elementary material tetrahedron and enforcing (14) and (15), respectively. The force-stress or total stress

tensor rij (which is asymmetric) is defined by

T ðnÞ
i ¼ rjinj; ð16Þ

and the couple-stress tensor lij (which also is asymmetric) by

M ðnÞ
i ¼ ljinj; ð17Þ

where nj are the direction cosines of the outward unit vector n, which is normal to the surface. In addition,

just like the third Newton�s law TðnÞ ¼ �Tð�nÞ is proved to hold by considering the equilibrium of a material

�slice�, it can also be proved that MðnÞ ¼ �Mð�nÞ. The couple-stresses lij are expressed in dimensions of

[force][length]�1. Further, rij can be decomposed into a symmetric and an anti-symmetric part

rij ¼ sij þ aij; ð18Þ

with sij ¼ sji and aij ¼ �aji, whereas it is advantageous––as will become clear below––to decompose lij into
its deviatoric lðDÞ

ij and spherical lðSÞ
ij part in the following manner

lij ¼ mij þ 1
3
dijlkk; ð19Þ

where mij � lðDÞ
ij , lðSÞ

ij � ð1=3Þdijlkk, and dij is the Kronecker delta.

Now, with the above definitions in hand and with the help of the divergence theorem, one may obtain the

stress equations of motion. Thus, Eq. (15) leads to the following moment equation

oilij þ rkieijk þ Cj ¼
qh2

3
ok€uuieijk; ð20Þ

which can also be written as

1

2
oililejkl þ ajk þ

1

2
Clejkl ¼

qh2

3
om€uunenimejik; ð21Þ

since by its definition the anti-symmetric part of stress is written as a � �ð1=2ÞI� ðr � IÞ, where I is the

idemfactor (i.e. the dyadic representation of the Kronecker delta). Also, Eq. (14) leads to the following

force equation

ojrjk þ Fk ¼ q€uuk; ð22Þ
or, by virtue of (18), to the equation

ojsjk þ ojajk þ Fk ¼ q€uuk: ð23Þ
Further, combining (21) and (23) yields the single equation

ojsjk �
1

2
ojoililejkl þ Fk �

1

2
ojClejkl ¼ q€uuk �

qh2

3
ojj€uuk: ð24Þ
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Finally, in view of Eq. (19) and by taking into account that curlðdivðð1=3ÞdijlkkÞÞ ¼ 0, i.e. that the curl of

the divergence of a spherical tensor vanishes, we write (24) as

ojsjk �
1

2
ojoimilejkl þ Fk �

1

2
ojClejkl ¼ q€uuk �

qh2

3
ojj€uuk: ð25Þ

Eq. (25) is therefore the single equation of motion. It should also be noticed that, within the present theory

and in the general inertial case, the total stress tensor rij is not an objective quantity since Eqs. (18) and (21)

imply that rij contains acceleration terms, which are non-objective of course. Body forces and body couples

are also non-objective quantities. On the other hand, rjk and ljk should be objective because these are
related by (16) and (17) with the surface loads, which are objective quantities. The foregoing difficulty––

identified by Eringen (1968) among others––can be circumvented by the following suggestion of Jaunzemis

(1967, p. 233). To render rjk objective, ajk in (21) is taken objective by assuming that there exists an effective

body couple defined as the difference ½ðqh2=3Þom€uunenimejik � ð1=2ÞClejkl� that is objective, although none of

the two quantities in the brackets is objective. Of course, one may be opposed to the previous argument but

cannot object to the fact that in the absence of body couples and in particular (but still useful) cases of the

theory, like the quasi-static case and the time-harmonic steady-state dynamic case, rij becomes objective.

Indeed, in the quasi-static case the acceleration terms are zero, whereas in the time-harmonic case (which
is used below to analyze the problem of Rayleigh-wave motions) the accelerations €uuk in the plane-strain case

(now k ¼ ð1; 2Þ) become �x2ukðx1; x2Þ through Eq. (35a,b)––see next section. It is noticed that x is

the frequency and the time is factored out through the common term expð�ixtÞ multiplying every quantity
in a time-harmonic response. Therefore, non-objective quantities do not appear in the case of interest

here.

In light of the above discussion, one may view the general transient theory as a vehicle to arrive at specific

cases of interest, without omitting micro-structure effects, even if the general theory exhibits the foregoing

peculiarity. On the other hand, the constitutive equations obey the principle of objectivity in any case (cf.
Eqs. (31)–(33) below).

As for the kinematical description of the continuum, the following quantities are defined

eij ¼ 1
2
ðojui þ oiujÞ; ð26Þ

xij ¼ 1
2
ðoiuj � ojuiÞ; ð27Þ

xi ¼ 1
2
eijkojuk; ð28Þ

jij ¼ oixj; ð29Þ

where eij is the strain tensor, xij is the rotation tensor, xi is the rotation vector, and jij is the torsion-flexure

tensor (i.e. the gradient of the rotation or the curl of the strain) expressed in dimensions of [length]�1.

Notice also that (29) can alternatively be written as

jij ¼ 1
2
ejkloiokul ¼ ejklokeli: ð30Þ

We notice, in addition, that jii ¼ 0 because jii � oixi ¼ ð1=2Þeijkuk;ji ¼ 0 (where the latter equality is true

due to the skew-symmetry of the permutation symbol) and, therefore, that jij has only eight independent

components. The tensor jij is obviously an asymmetric tensor.

It is time now to introduce the constitutive equations of the theory by assuming the following isotropic

expression for the potential-energy density W . This expression involves four different material constants

and it reads

W � W ðeij; jijÞ ¼ 1
2
keiiejj þ leijeij þ 2gjijjij þ 2g0jijjji; ð31Þ
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where ðk; l; g; g0Þ are the material constants. Eq. (31) leads to the constitutive equations

sij � rðijÞ ¼
oW
oeij

¼ kdijekk þ 2leij; ð32Þ

mij ¼
oW
ojij

¼ 4gjij þ 4g0jji: ð33Þ

In view of the above, the moduli ðk; lÞ have the same meaning with the Lam�ee constants of the clas-

sical elasticity theory, whereas the moduli ðg; g0Þ account for the couple-stress effects of the material be-
havior.
Finally, the following points are of notice. (i) The form in (31) stems from the more general form of the

first law of thermodynamics for a continuum with couple-stresses q _EE ¼ sij _eeij þ ð1=2Þmijejkloki _uul, where E is

the internal energy per unit mass. (ii) The couple-stress moduli ðg; g0Þ are expressed in dimensions of [force].
(iii) Since jii ¼ 0, mii ¼ 0 is also valid and therefore the tensor mij has only eight independent components.

(iv) The scalar ð1=3Þlkk of the couple-stress tensor lij does not appear in the final equation of motion and

in the constitutive equations either. Consequently, ð1=3Þlkk is left indeterminate within the couple-stress

theory. In other words, the field lij is unique except for an arbitrary additive (constant) isotropic couple-

stress field. (v) The following restrictions for the material constants should prevail as obtained by Mindlin
and Tiersten (1962) on the basis of a positive definite potential-energy density (the positive definiteness is, in

turn, a necessary condition for the uniqueness theorem to be proved––see e.g. Mindlin and Tiersten, 1962

and Mindlin and Eshel, 1968)

3k þ 2l > 0; l > 0; g > 0; �1 <
g0

g
< 1: ð34a; b; c; dÞ

3. Plane-strain time-harmonic dynamical response

In order to analyze wave motions, we consider the following two-dimensional time-harmonic response of
a linearly elastic isotropic body characterized by micro-structure and couple-stress effects. The body oc-

cupies a domain in the ðx � x1; y � x2Þ-plane and is under conditions of plane strain. For the analysis of

Rayleigh waves, we consider as an appropriate domain the half-space y P 0 having as a boundary the plane

ðx; z � x3Þ. Then, we have

uxðx; y; tÞ ¼ uxðx; yÞ � expð�ixtÞ; uyðx; y; tÞ ¼ uyðx; yÞ � expð�ixtÞ; uz � 0; ð35a; b; cÞ

where ðux; uy ; uzÞ are the displacement components, i � ð�1Þ1=2, t is the time, and x is the frequency. In what

follows, as is standard in time-harmonic problems, it is understood that all field quantities are to be
multiplied by the factor expð�ixtÞ and that the real part of the resulting expression is to be taken. Below,

we derive the field equations of the problem and then uncouple them by using Lam�ee potentials.
First, the components of the force-stress and couple-stress tensors will be obtained. The independence

upon the coordinate z of all components of force-stress and couple-stress tensors, under the assumption

(35c), was proved by Muki and Sternberg (1965). Indeed, it is noteworthy that, contrary to the respective

plane-strain case in the conventional theory, this independence is not obvious within the couple-stress

theory. Notice further that except for xz and ðjxz; jyzÞ all other components of the rotation vector and the

torsion-flexure tensor identically vanish, in the particular case of plane-strain considered here. The non-
vanishing components ðsxx; sxy ; syyÞ and ðmxz;myzÞ follow from (32) and (33), respectively. Then,

ðaxx; axy ; ayx; ayyÞ are found from (21) and, finally, ðrxx;rxy ; ryx; ryyÞ are provided by (18). Vanishing body
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forces and body couples are assumed in what follows. In view of the above, the following expressions are

written

mxz ¼ 2g
o2uy

ox2

�
� o2ux

oxoy

�
; ð36Þ

myz ¼ 2g
o2uy

oxoy

�
� o2ux

oy2

�
; ð37Þ

axx ¼ ayy ¼ 0; ð38Þ

ayx ¼ �Ix2 ouy

ox

�
� oux

oy

�
þ 1

2

omxz

ox

�
þ omyz

oy

�
; ð39Þ

axy ¼ �ayx; ð40Þ

rxx ¼ ðk þ 2lÞ oux

ox
þ k

ouy

oy
; ð41Þ

ryy ¼ ðk þ 2lÞ ouy

oy
þ k

oux

ox
; ð42Þ

ryx ¼ l
oux

oy

�
þ ouy

ox

�
� Ix2 ouy

ox

�
� oux

oy

�
þ g

o3uy

ox3

�
� o3ux

ox2 oy
þ o3uy

oxoy2
� o3ux

oy3

�
; ð43Þ

rxy ¼ l
oux

oy

�
þ ouy

ox

�
þ Ix2 ouy

ox

�
� oux

oy

�
� g

o3uy

ox3

�
� o3ux

ox2 oy
þ o3uy

oxoy2
� o3ux

oy3

�
; ð44Þ

where I ¼ qh2=3 is the micro-inertia coefficient and one may notice also that the material constant g0 does

not appear at all in the plane-strain equations. One may observe that all stresses given above are objective, a

fact that is in accord with the relative discussion in the last section.

Next, the field equations of the problem will be obtained. The equation of motion (25) takes the form

ojsjk � ð1=2Þojoimilejkl ¼ q€uuk � Iojj€uuk, where the indices ði; j; k; lÞ take now the values 1 and 2 only. Further,

the second-order time derivatives, in view of (35), will become �x2ukðx; yÞ, and the only surviving stresses

ðsxx; sxy ; syyÞ and ðmxz;myzÞ will be provided by (32) and (36)–(37), respectively, in terms of the displacement
gradients. Therefore, in the case of a time-harmonic plane-strain response, the equation of motion leads to

the following system of coupled PDEs for the displacement components ðux; uyÞ

ðk þ 2lÞ o
2ux

ox2
þ k

o2uy

oxoy
þ l

o2uy

oxoy

�
þ o2ux

oy2

�
þ g

o4uy

ox3 oy

�
� o4ux

ox2 oy2
þ o4uy

oxoy3
� o4ux

oy4

�

¼ �qx2ux þ Ix2 o2ux

ox2

�
þ o2ux

oy2

�
; ð45Þ

ðk þ 2lÞ o
2uy

oy2
þ k

o2ux

oxoy
þ l

o2ux

oxoy

�
þ o2uy

ox2

�
þ g

o4ux

ox3 oy

�
� o4uy

ox2 oy2
þ o4ux

oxoy3
� o4uy

ox4

�

¼ �qx2uy þ Ix2 o2uy

ox2

�
þ o2uy

oy2

�
: ð46Þ
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Although the above system is much more complicated than that in the respective case of classical

elastodynamics (see e.g. Sternberg, 1960; Fung, 1965), uncoupling by the use of Lam�ee-type potentials still
proves to be successful. The potentials ð/;wÞ are defined in terms of the displacement components ðux; uyÞ
as

ux ¼
o/
ox

þ ow
oy

; uy ¼
o/
oy

� ow
ox

; ð47a; bÞ

and some tedious algebra leads to the following uncoupled PDEs, which are the field equations of the

problem. The first PDE is of the second order but the second is of the fourth order, i.e.

½ðk þ 2l � Ix2Þr2 þ qx2�/ ¼ 0; ð48Þ

½gr4 � ðl � Ix2Þr2 � qx2�w ¼ 0; ð49Þ
where

r2 ¼ o2

ox2
þ o2

oy2
; r4 ¼ o4

ox4
þ 2

o4

ox2 oy2
þ o4

oy4
: ð50a; bÞ

Finally, introducing the following quantities

gL ¼ 1� Ix2

k þ 2l
; gT ¼ 1� Ix2

l
; k2L ¼ qx2

k þ 2l
; k2T ¼ qx2

l
; ð51a; b; c; dÞ

permits writing (48) and (49) under the compact forms

gLr2/ þ k2L/ ¼ 0; ð52Þ

ðg=lÞr4w � gTr2w � k2Tw ¼ 0; ð53Þ
where the coefficient ðg=lÞ of the operator with the highest order in (53) has dimensions of [length]2. Since

ðg=lÞ ! 0 in the case of classical elasticity, the very form of (53) reveals the singular-perturbation character

of the couple-stress theory and the emergence of associated boundary-layer effects. It is expected therefore

that the influence of couple-stresses hinges crucially on the relative size of the characteristic length-

parameter ðg=lÞ1=2. It is reminded that one of the goals of the present work is to provide means for esti-

mating the relation between ðg=lÞ1=2 and the size of the material unit-cell 2h. It is also noticed that in the
case gL ¼ 1 (i.e. when the micro-inertia is absent), (52) becomes identical to the Helmholtz PDE governing

the longitudinal time-harmonic motions within classical elastodynamics. On the other hand, unlike the

corresponding case of shear motions within classical elastodynamics, Eq. (53) being it a fourth-order PDE

shows that wave signals emitted from a disturbance point propagate at different velocities (see e.g. Chester,

1971).

4. General transformed solutions and the dispersion equation for Rayleigh waves

The two-sided Laplace transform is utilized to suppress the x-dependence in the field equations and

boundary conditions in the half-space domain ð�1 < x < 1; y P 0Þ and to lead to general solutions for

the potentials in the complex domain. The direct and inverse transforms are defined as follows (see e.g.

Bracewell, 1965)

f �ðp; yÞ ¼
Z 1

�1
f ðx; yÞe�px dx; f ðx; yÞ ¼ 1

2pi

Z
Br

f �ðp; yÞepx dp; ð54a; bÞ
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where Br denotes the Bromwich inversion path within the region of analyticity of the function f �ðp; yÞ.
Transforming Eqs. (52) and (53) with (54a) gives the following ODEs

gL
d2/�

dy2
þ ðgLp2 þ k2LÞ/

� ¼ 0; ð55Þ

g
l
d4w�

dy4
þ 2

g
l
p2

�
� gT

�
d2w�

dy2
þ g

l
p4

�
� gT p2 � k2T

�
w� ¼ 0; ð56Þ

and, further, the general transformed solutions for y P 0

/�ðp; yÞ ¼ A1ðpÞ � expð�bLyÞ; ð57Þ

w�ðp; yÞ ¼ A2ðpÞ � expð�bT yÞ þ A3ðpÞ � expð�cT yÞ; ð58Þ

where

bL ¼ iðp2 þ r2
LÞ

1=2
; with rL ¼ kL

g1=2L

; ð59a; bÞ

bT ¼ iðp2 þ r2
T Þ

1=2
; with rT ¼

ðg2T þ 4ðg=lÞk2T Þ
1=2 � gT

h i1=2
ð2g=lÞ1=2

; ð60a; bÞ

cT ¼ ðs2T � p2Þ1=2; with sT ¼ ½ðg2T þ 4ðg=lÞk2T Þ
1=2 þ gT �1=2

ð2g=lÞ1=2
; ð61a; bÞ

and the functions ðA1;A2;A3Þ are yet unknown functions (amplitude functions), which can be determined in

each specific problem through the enforcement of boundary conditions.

A point also that deserves attention is the introduction of the branch cuts for the functions ðbL; bT ; cT Þ in
the complex p-plane, in such a manner that a bounded solution at y ! 1 is always secured (i.e. in order for

the functions to have positive real parts). Any inversion then of the type (54b) should be performed by

considering the appropriate restrictions in the cut plane. Fig. 3 shows the branch cuts of the functions
ðbT ; cT Þ for all frequencies and the branch cuts of the function bL for those frequencies resulting only in

real rL (the latter condition requires that gL > 0). In the case that gL < 0, bL in (59a) takes the form bL ¼
ðr2

L � p2Þ1=2, where rL ¼ kL=ðjgLjÞ1=2, and the branch cuts for bL will be along the intervals ðrL < jReðpÞj <
1; ImðpÞ ¼ 0Þ (i.e. the cuts will resemble the ones for cT ). At the frequency yielding gL ¼ 0, we have a

change of the character of the PDE in (52) from a standard Helmholtz equation (when gL > 0) to a modified

Helmholtz equation (when gL < 0). However, when material constants for usual solids are employed, the

latter case occurs at extremely high frequencies. Finally, Fig. 3 also exhibits the behavior of the functions

ðbL; bT ; cT Þ in the complex p-plane.
The criterion now for surface Rayleigh waves is that the displacement potentials decay exponentially with

the distance y from the half-space surface (Knowles, 1966; see also Brock, 1998 for a general discussion of

surface waves within the classical elasticity theory). In view of the previous analysis leading to (57) and (58),

we explore the possibility of progressive-wave solutions to (25) having the following form of a distinct

harmonic component

�//sðx; y; tÞ ¼ A1ðpÞ � expð�jbLjyÞ � expðpxÞ � exp½�ixðpÞ � t� � /�
s ðp; yÞ � expðpxÞ � exp½�ixðpÞ � t�

� /�
s ðq; yÞ � exp½iqðx � CphtÞ�; ð62Þ
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�wwsðx; y; tÞ ¼ fA2ðpÞ � expð�jbT jyÞ þ A3ðpÞ � expð�jcT jyÞg � expðpxÞ � exp½�ixðpÞ � t�
� w�

s ðp; yÞ � expðpxÞ � exp½�ixðpÞ � t� � w�
s ðq; yÞ � exp½iqðx � CphtÞ�; ð63Þ

where ðA1;A2;A3Þ represent arbitrary amplitude functions denoting the relative dominance of a particular

harmonic component, the propagation wavenumber q � ðp=iÞ is taken to be a real quantity, Cph ¼ x=q is

defined as the phase velocity of the Rayleigh waves, and ðbL; bT ; cT Þ defined in (59a), (60a) and (61a) are

taken to be real and positive functions. The latter restriction is satisfied if and only if rL < jqj and rT < jqj.
Taking a real wavenumber excludes the possibility of localized standing waves (i.e. leaky or evanes-
cent motions), whereas the frequency at which the wavenumber (for a particular mode) changes from

real to imaginary (or complex) values is the cut-off frequency. Finally, we notice that a general Rayleigh

surface-wave solution (synthesis) can be derived from (62) and (63) as the following Laplace inversion

integrals

/ðx; y; tÞ ¼ 1

2pi

Z
Br

/�
s ðp; yÞepxe�ixðpÞ�t dp; wðx; y; tÞ ¼ 1

2pi

Z
Br

w�
s ðp; yÞepxe�ixðpÞ�t dp:

Next, the appropriate traction-free boundary conditions are considered for unforced Rayleigh-wave
propagation. These follow from Eqs. (16) and (17) as

ryyðx; y ¼ 0Þ ¼ 0; ryxðx; y ¼ 0Þ ¼ 0; myzðx; y ¼ 0Þ ¼ 0: ð64a; b; cÞ
In view now of the constitutive relations in (37), (42) and (43), the definition of the Lam�ee potentials in (47)

and the properties of the two-sided Laplace transform, the above equations provide

ðk þ 2lÞ d
2/�ðp; y ¼ 0Þ

dy2
� 2lp

dw�ðp; y ¼ 0Þ
dy

þ kp2/�ðp; y ¼ 0Þ ¼ 0; ð65aÞ

Fig. 3. Branch cuts for the functions ðbL;bT ; cT Þ. The index j takes the values ðL; T Þ.
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ðl � Ix2Þ d
2w�ðp; y ¼ 0Þ

dy2
þ 2lp

d/�ðp; y ¼ 0Þ
dy

� ðl � Ix2Þp2w�ðp; y ¼ 0Þ

� g
d4w�ðp; y ¼ 0Þ

dy4

�
þ p4w�ðp; y ¼ 0Þ þ 2p2

d2w�ðp; y ¼ 0Þ
dy2

�
¼ 0; ð65bÞ

d3w�ðp; y ¼ 0Þ
dy3

þ p2
dw�ðp; y ¼ 0Þ

dy
¼ 0: ð65cÞ

Further, introducing the general solutions (57) and (58) in Eq. (65), one obtains the following system of

three equations in the three unknowns ðA1;A2;A3Þ

fkp2 þ ðk þ 2lÞb2
LgA1ðpÞ þ 2lpbT A2ðpÞ þ 2lpcTA3ðpÞ ¼ 0; ð66aÞ

� 2pbLA1ðpÞ þ f�ðg=lÞðb4
T þ 2b2

T p
2 þ p4Þ � p2gT þ b2

T þ b2
T ðIx2=lÞgA2ðpÞ

þ f�ðg=lÞðc4T þ 2c2T p
2 þ p4Þ � p2gT þ c2T þ c2T ðIx2=lÞgA3ðpÞ ¼ 0; ð66bÞ

bT ðp2 þ b2
T ÞA2ðpÞ þ cT ðp2 þ c2T ÞA3ðpÞ ¼ 0: ð66cÞ

With the understanding that the zero RHS in each of the above equations could be replaced by appropriate

transformed expressions, Eqs. (66) may serve for the solution to general traction boundary-value-problems

involving forced motions and not only Rayleigh-type free motions.

If, additionally, the wavenumber q is introduced (as defined above) and the expressions jbLj ¼
ðq2 � r2

LÞ
1=2

(gL > 0 case), jbT j ¼ ðq2 � r2
T Þ

1=2
and jcT j ¼ ðs2T þ q2Þ1=2 (with q being real and such that rL < jqj

and rT < jqj) are used in (66), the following system is obtained

½�kr2
L þ 2lðq2 � r2

LÞ�A1ðqÞ þ ½2lqðq2 � r2
T Þ

1=2�iA2ðqÞ þ ½2lqðq2 þ s2T Þ
1=2�iA3ðqÞ ¼ 0; ð67aÞ

½�2qðq2 � r2
LÞ

1=2�iA1ðqÞ þ
�
� ðg=lÞr4

T þ q2gT þ ðq2 � r2
T Þ 1

�
þ Ix2

l

��
A2ðqÞ

þ
�
� ðg=lÞs4T þ q2gT þ ðq2 þ s2T Þ 1

�
þ Ix2

l

��
A3ðqÞ ¼ 0; ð67bÞ

½�r2
T ðq2 � r2

T Þ
1=2�A2ðqÞ þ ½s2T ðq2 þ s2T Þ

1=2�A3ðqÞ ¼ 0: ð67cÞ
In the case gL < 0, the expression ðq2 � r2

LÞ
1=2

for jbLj will be replaced by ðq2 þ r2
LÞ

1=2
in Eqs. (66).

The vanishing now of the determinant of the coefficients of the unknowns (eigenvalue problem) provides

the dispersion equation for the propagation of Rayleigh waves in a micro-structured material characterized

by couple-stress elasticity

½�2qðq2 � r2
LÞ

1=2�½�r2
T ðq2 � r2

T Þ
1=2�½2lqðq2 þ s2T Þ

1=2� � ½�2qðq2 � r2
LÞ

1=2�½s2T ðq2 þ s2T Þ
1=2�½2lqðq2 � r2

T Þ
1=2�

� ½�kr2
L þ 2lðq2 � r2

LÞ�½s2T ðq2 þ s2T Þ
1=2�

�
� ðg=lÞr4

T þ q2gT þ ðq2 � r2
T Þ 1

�
þ Ix2

l

��

þ ½�kr2
L þ 2lðq2 � r2

LÞ�½�r2
T ðq2 � r2

T Þ
1=2�

�
� ðg=lÞs4T þ q2gT þ ðq2 þ s2T Þ 1

�
þ Ix2

l

��
¼ 0: ð68Þ

The above equation is complicated and does not yield even to modern programs of symbolic algebra (e.g.

MATHEMATICAe). Numerical results were therefore derived through solving the dispersion equation
numerically by techniques of root bracketing and root finding with bisection (Brent�s method––see e.g.

Press et al., 1986). This requires a rather elaborate FORTRAN programming though.
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5. Numerical results and concluding remarks

Here, we give some representative results in the form of dispersion curves. To this end, the following

normalizations are employed for, respectively, the dimensionless wavenumber and the dimensionless fre-
quency

qd ¼ ðg=lÞ1=2q; xd ¼
h

31=2ðl=qÞ1=2
x; ð69a; bÞ

whereas the shear-wave velocity of the medium in the absence of couple-stress and micro-structure effects

VT ¼ ðl=qÞ1=2 is utilized to conveniently normalize the phase velocity of the Rayleigh waves Cph.

The dispersion curves depicted in the graphs of Figs. 4–9 were obtained by using the properties of a

closed-cell polymethacrylimide material exhibiting micro-structure. These properties are given by Anderson

Fig. 4. Dispersion curves for Rayleigh waves showing the variation of the normalized frequency xd with the normalized wavenumber

qd for a closed-cell polymethacrylimide material exhibiting micro-structure. Graphs for six different relations between the couple-stress

modulus g and the characteristic material length h are presented.

Fig. 5. Dispersion curves for Rayleigh waves showing the variation of the normalized phase velocity Cph=VT with the normalized

frequency xd for a closed-cell polymethacrylimide material exhibiting micro-structure. Graphs for six different relations between the

couple-stress modulus g and the characteristic material length h are presented.
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and Lakes (1994) as k ¼ 99:03� 106 Pa, l ¼ 285� 106 Pa, m ¼ 0:13 (Poisson�s ratio), q ¼ 0:38 gr/cm3 and

h ¼ 3:25� 10�4 m. In order to compare the form of the dispersion curves obtained by the present analysis
with the form of the dispersion curves provided by atomic-lattice calculations, we consider several relations

between the couple-stress modulus g and the intrinsic material length h. These relations vary from g ¼ 4lh2

to g ¼ 0:05lh2. Also, we focus attention only to results derived for high frequencies.

Figs. 4 and 7 clearly show that the graph of xd as a function of qd is no longer a straight line in most of

the cases and, therefore, the Rayleigh waves are dispersive. The same conclusion is reached, of course, by

observing Figs. 5, 6, 8 and 9, which exhibit the fact that the phase velocity depends upon the frequency and

the wavenumber. On the other hand, it may be concluded from the results of Figs. 5 and 6 that the choices

g ¼ 4lh2 and g ¼ lh2 are rather irrelevant since they lead to Rayleigh-wave propagation speeds higher than
or equal to the speed VT ¼ ðl=qÞ1=2. This phenomenon was never detected in experiments. Between the

remaining cases now, the relations g ¼ 0:1lh2 and g ¼ 0:05lh2 seem to be appropriate since the dispersion

curves they generate (see Figs. 4, 7–9) are close in form to available atomic-lattice calculations (see e.g.

Fig. 6. Dispersion curves for Rayleigh waves showing the variation of the normalized phase velocity Cph=VT with the normalized

wavenumber qd for a closed-cell polymethacrylimide material exhibiting micro-structure. Graphs for six different relations between the

couple-stress modulus g and the characteristic material length h are presented.

Fig. 7. xd vs. qd dispersion curves for the relations g ¼ 0:05lh2 and g ¼ 0:1lh2.
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Gazis et al., 1960). Certainly, availability of experimental measurements for a specific material with micro-
structure will allow for more accurate estimates of the value of the couple-stress modulus g. We emphasize

that the purpose of the comparisons above was just to indicate a means to determine the micro-structural

parameter g.
Finally, Fig. 10 shows two dispersion curves derived for a material with constants ðk; l; qÞ as given before

and g ¼ 1:5051 N. For the purpose of comparison again, in the first case h ¼ 3:25� 10�4 m was taken,

whereas in the second h ¼ 0 was set. The latter case concerns a material without micro-structure and the

corresponding dispersion curve exhibits an initial part, which is concave up. This finding agrees with the

results of Ottosen et al. (2000) showing that the Rayleigh-wave velocity will exceed the shear-wave velocity.
As mentioned before, this result is not satisfactory. In addition, the form of the dispersion curve for h ¼ 0

does not agree with that obtained by atomic-lattice calculations (see e.g. Gazis et al., 1960). Therefore, the

present results demonstrate that the material micro-structure is a necessity for a satisfactory simulation of

dispersion curves obtained by the atomic-lattice approach.

In conclusion, the main goals of the present work were: (i) to derive in a simple manner basic theoretical

results concerning combined couple-stress and micro-structure effects, (ii) to prove that the couple-stress

Fig. 8. Cph=VT vs. xd dispersion curves for the relations g ¼ 0:05lh2and g ¼ 0:1lh2.

Fig. 9. Cph=VT vs. qd dispersion curves for the relations g ¼ 0:05lh2 and g ¼ 0:1lh2.
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elasticity theory with micro-structure does predict dispersive Rayleigh waves at high frequencies, and (iii) to

indicate that comparing the form of dispersion curves obtained by the present approach with the form

obtained experimentally or by the discrete particle theory may determine the relation between the couple-
stress modulus g and the size of the unit cell h of the micro-structured material. Our study shows that the

use of the couple-stress elasticity theory with micro-structure in the problem of Rayleigh waves extends the

range of applicability of continuum theories. This is a step in the efforts towards bridging the gap between

classical (monopolar) theories of continua and theories of atomic lattices.
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