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Abstract

A well-known deficiency of the classical theory of elasticity is that it does not predict dispersive Rayleigh-wave
motions at any frequency. This contradicts experimental data and predictions of the discrete particle theory (atomic-
lattice approach) for high frequencies. The present work is intended to explore whether the elastic couple-stress theory
with micro-structure can overcome the deficiency of the classical theory. Our analysis shows indeed that Rayleigh waves
propagating along the surface of a half-space are dispersive at high frequencies, a result that can be useful in appli-
cations of high-frequency surface waves where the wavelength is often of the micron order. Provided that certain re-
lations hold between the various micro-structure parameters entering the theory employed here, the dispersion curves of
these waves have the same form as that given by previous analyses based on the atomic-lattice theory. In this way, the
present analysis gives means to obtain estimates for micro-structure parameters of the couple-stress theory. Besides the
Rayleigh-wave results reported here, basic theoretical results for the kinetic energy and momentum balance laws in
micro-structured media with couple-stress effects are derived and presented.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The present work is concerned with Rayleigh-type surface wave propagation in a material with micro-
structure. To explain dispersion phenomena at high frequencies (small wavelengths) occurring in practical
situations (see e.g. Gazis et al., 1960; White, 1970; Farnell, 1978) and therefore to circumvent the deficiency
of the conventional elasticity theory (which does not predict dispersion of Rayleigh waves at any fre-
quency), the problem is attacked with the couple-stress theory of elasticity with micro-structure. Indeed, it
is expected that material micro-structure will be an important factor in the propagation of high-frequency
surface waves often encountered in electronic-device applications, since the frequencies are on the order of
GHz (or even greater) and therefore wavelengths on the micron order may appear. The theory employed
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here falls into the category of generalized continuum theories and is a particular case of the general ap-
proaches of Mindlin (1964) and Green and Rivlin (1964). In these theories, the basic idea consists of en-
dowing each point of a continuum with an internal displacement field, which is expanded as a power series
in internal coordinate variables. The lowest-order theory is obtained by retaining only the first (linear) term.
As is well-known, ideas underlying the couple-stress linear theory of elasticity were advanced first by Voigt
(1887) and the brothers Cosserat and Cosserat (1909), but the subject was generalized (e.g. including inertia
effects) and reached maturity only with the aforementioned works of Mindlin and Green/Rivlin. In addi-
tion, Kroner (1963) gave physical aspects pertinent to crystal lattices and a non-local interpretation of the
theory.

It is noted that earlier application of the couple-stress elasticity theory, mainly on quasi-static problems
of stress concentration, met with success providing solutions more adequate physically than classical-
elasticity solutions (see e.g. Mindlin and Tiersten, 1962; Weitsman, 1965, 1967; Day and Weitsman, 1966;
Bogy and Sternberg, 1967a,b; Lakes, 1982). Extensive work employing couple-stress theories, as well as
related strain-gradient theories, on elasticity and plasticity problems is also continued in recent years (see
e.g. Papamichos et al., 1990; Anderson and Lakes, 1994; Fleck et al., 1994; Vardoulakis and Sulem, 1995;
Lakes, 1995; Wei and Hutchinson, 1997; Huang et al., 1997; Chen et al., 1998; Georgiadis, 2000; Lubarda
and Markenscoff, 2000; Bardet and Vardoulakis, 2001; Amanatidou and Aravas, 2001). In particular,
Huang et al. (1997) provided solutions to interesting crack problems, Lubarda and Markenscoff (2000)
derived general conservation laws for the couple-stress elasticity theory, and Bardet and Vardoulakis (2001)
discussed the importance of couple-stresses in granular media.

In the present work, although complexity of the theory has been kept at a minimum (by retaining a
restricted number of material parameters), a micro-inertia term was included (in a rigorous manner) because
previous experience with related wave-propagation problems considered through the dipolar gradient
theory (Georgiadis et al., 2000) shows that this term is indeed important at high frequencies and including it
in the formulation of the problem gives, in fact, dispersion curves that mostly resemble with the ones
obtained by atomic-lattice considerations. It is also noticed that no such couple-stress theory with micro-
structure was proposed up to now to deal with Rayleigh-wave motions. Recently, however, the dipolar
gradient theory without couple-stress effects was employed to study the same problem (Georgiadis et al.,
2002) and some other wave-propagation problems (Vardoulakis and Georgiadis, 1997; Georgiadis and
Vardoulakis, 1998; Georgiadis et al., 2000). Finally, we emphasize that contrary to quasi-static couple-
stress approaches, which do not include explicitly the size of the material unit cell (micro-medium) in the
formulation of the problem, the present approach fully takes into account this intrinsic material length by
appropriately considering a micro-inertia term in the balance of angular momentum. Moreover, the present
analysis provides means to estimate the relation between the characteristic material length 24 and the so-
called couple-stress modulus # (which is the coefficient of the rotation gradient, in the strain-energy density
expression, and is an additional—to the standard Lamé constants—material parameter in the couple-stress
theory). This, in general, can be obtained through comparisons of dispersion curves that can be obtained in
the spirit of the present analysis with dispersion curves given either by experiments or atomic-lattice cal-
culations.

Another important notice pertains to the relevance of the couple-stress theory in modeling Rayleigh-
wave motions. Indeed, the physical mechanism of the Rayleigh-wave motions (as this mechanism is re-
vealed, e.g. in the experimental work of Dally and Thau, 1967) suggests that there is a much stronger shear
contribution than a dilatational one, and therefore one may expect that considering pronounced shear
effects in the material response (as is the effect of the gradient of rotation and the associated effect of non-
collinear dipolar internal forces resulting in couples that are included in the present formulation) most
properly simulates the phenomenon of Rayleigh waves.

In our analysis, displacement potentials of the Lamé type and two-sided Laplace transforms in the
complex domain are employed. Results are then derived through numerically solving the dispersion
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equation by techniques of root bracketing and root finding with bisection (Brent’s method—see e.g. Press
et al., 1986). Here also, besides the main analysis on Rayleigh waves, a development of basic theoretical
results concerning the kinetic energy and momentum balance laws in materials with micro-structure and
couple-stress effects is provided.

Before presenting our own results, we would like to discuss briefly two related studies published before
on the subject of dispersive Rayleigh waves. The first study (Suhubi and Eringen, 1964) develops and
applies the theory of micro-polar elasticity. This theory is more general than the one employed here but,
also, much more complicated since it involves 18 material constants (in its isotropic linear version) and the
present theory involves only four material constants (see Eq. (31) below). The work by Suhubi and Eringen
(1964) on Rayleigh waves, however, does not employ explicitly the size of the unit cell (intrinsic material
length) nor present any dispersion curve. Also, they reached the final dispersion equation through some
approximation. Finally, in both the general Mindlin—-Green—Rivlin theory and the simpler Eringen—Suhubi
theory, the large number of material constants prevents their applicability to practical problems and poses
difficulties in physically interpreting and measuring all these constants.

The second study (Ottosen et al., 2000) employs the linear couple-stress theory without micro-structure.
The absence of considerations regarding micro-structure (i.e. ignoring the micro-inertia term) in the latter
work is the main difference with the present work. Of course, ignoring the micro-structure in this way
deprives one to extract any relation between the couple-stress modulus # and the intrinsic material length 4.
Besides that, ignoring the micro-structure is a simplification in any event. As explained below (see relative
comments immediately after Eq. (25)), the difficulty with the non-objectivity of the stress tensor (the non-
objectivity is due to the micro-inertia term and the body-couple field) can be circumvented even in the
general transient case and be completely eliminated in the specific time-harmonic case considered here to
analyze the Rayleigh waves. Thus, use of the complete theory has no danger of ill-posedness in the problem
considered here. In addition, the results given in Ottosen et al. (2000) show that the Rayleigh-wave velocity
exceeds the shear-wave velocity for a rather wide range of wavenumber values, as the frequency increases.
As these authors admit, this is a physically questionable result showing that the couple-stress theory
without micro-structure is not so successful in analyzing Rayleigh waves. On the contrary, the present
analysis is able to control the form of dispersion curves by properly adjusting the values of the couple-stress
modulus 7 in relation with the intrinsic material length 4. Finally, the work by Ottosen et al. (2000) follows
a different procedure than ours in deriving the dispersion equation. For instance, they do not use the
analysis of Muki and Sternberg (1965), who elucidated the issue of boundary conditions in plane-strain
problems of couple-stress elasticity. As a consequence, Ottosen et al. (2000) work with five boundary
conditions instead of the three boundary conditions pertinent to the plane-strain case. This complicates
their solution procedure. Also, they do not present dispersion curves. Instead, it is shown here that deriving
dispersion curves is important because these may serve for comparisons with experimental results and/or
atomic-lattice results.

2. Basic concepts and equations

In this section we briefly give the basic ideas and equations of the couple-stress theory of elasticity with
the effects of micro-structure and inertia/micro-inertia. The theory employed here is a particular case of
Form III in the general Mindlin’s (1964) approach. Nevertheless, we chose to present an alternative ap-
proach to Mindlin’s variational approach. Indeed, our derivation of basic results relies on the momentum
balance laws, which—in our opinion—provide more physical insight. It should also be mentioned that
versions of the couple-stress theory were introduced by, among others, Mindlin and Tiersten (1962), Koiter
(1964), Weitsman (1965), Muki and Sternberg (1965), and Mindlin and Eshel (1968). However, the latter
formulations do not include inertia and micro-inertia effects since they are of quasi-static character. As a
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consequence, the size of the material cell is not explicitly included in the governing equations of these
approaches and of other recent approaches of quasi-static character. In these analyses, rather, a charac-
teristic length appears in the governing equations only through the ratio (n/u), where n is the couple-stress
modulus (having dimensions of [force]) and u is the standard shear modulus of the material. Indeed, the
ratio (17/u) has dimensions of [length]>. As will become apparent below, it is only the dynamic analysis that
explicitly accounts for the size of the material unit cell (granule). Of course, the ratio (1/u) also appears
within the dynamic analysis, which therefore may allow for an interrelation of the two characteristic lengths
mentioned above.

The point of departure is considering a generalized continuum with material particles (macro-volumes),
behaving like deformable bodies. This behavior can easily be realized if such a macro-volume is viewed as a
collection of sub-particles (see Fig. 1). It is further assumed that internal forces (called dipolar forces by
Green and Rivlin (1964) and double forces by Mindlin (1964)) are developed between the sub-particles (see
Fig. 2). Although each pair of the dipolar forces has a zero resultant force, it gives generally a non-zero
moment and therefore gives rise to stresses on a surface called couple-stresses. This means that a surface
element may transmit, besides the usual force vector, a couple vector as well. In this way, the Euler—Cauchy
stress principle of classical (monopolar) continuum mechanics is augmented by considering additional
couple-tractions. One can interpret physically the couple-stresses as created by frictional couples resisting
the relative rotation of the grains (sub-particles). We note that examples of force systems of the dipolar
collinear or non-collinear type are given by Fung (1965, p. 304). Also, it is emphasized that although the
dipolar forces are self-equilibrating they produce generally non-vanishing stresses, the dipolar stresses.
Here, we consider only couple-stress effects and, accordingly, we have assumed that only the anti-symmetric
part of the dipolar forces contributes to the stress field. Compatible with this assumption is the choice of a
form of the strain-energy density (cf. Eq. (31) below) that depends upon the strain and the gradient of
rotation, but does not depend upon the gradient of strain.

2.1. Kinetic energy and momentum balance laws

A typical material particle occupies a volume ¥ (material volume). Each sub-particle (micro-medium) has
a mass mp(P =1,2,...), whereas the mass center of a typical sub-particle has coordinates xp or xp
(i=1,2,3) with respect to a Cartesian coordinate system x; (j = 1,2,3). The volume of the material
particle (macro-medium) has a total mass m = > mp, where summation is understood over P from 1 to the
number of sub-particles comprising the macro-medium. The mass center of the material particle is given as

_ S mpxp _ [, xdm
m m

Cc

(1)

The quantities Y mpxp and > mpxpxp; are, respectively, the first and second moments of mass. We also
define the relative positions of sub-particles

sub-particles

. (OO0
CHC,

material particle
Xy %

Fig. 1. A continuum with micro-structure. A material particle is composed by sub-particles.
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dipolar forces

j sub-particles

m |-T:| D III F1 (monopolar
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0 X

Fig. 2. Monopolar (external) and dipolar (internal) forces acting on an ensemble of sub-particles in a material with micro-structure.
The anti-symmetric part of the dipolar forces gives rise to couple-stresses.

Xp = Xp —C. (2)

Then, in view of (2), the second moment of mass takes the form

E MpXpXp; = MC;C; + g mpXpXp;. (3)

From Eq. (3) next, differentiating w.r.t. time and by taking also into account that m¢ = > mpvy and
> mpVp = 0 (the latter equality actually means that the ‘internal velocities’ of the sub-particles do not
contribute to the linear momentum—see below for the proof), one obtains

E mpXp;Upj :mc,-éjJr E mijHDIDj, (4)

where () = D( )/Dt is the material time-derivative, vp; = Xp; and vp; = Xp;.
The simplest possible mode of internal motion is now assumed, i.e. the /inear approximation

DPj = UijPk (k = 17 27 3)7 (5)

where vy can be called dipolar velocities. These can be considered the counterparts of the velocity gradients
Orv; (with 0;( ) = 0( )/0x;) describing the rates of deformation of the ‘network’ of lines connecting the mass
centers of the sub-particles. In the same manner, one can introduce higher-order multipolar velocities by
writing Bp; = vyXp; + VeXpXpe + - - -, with (¢ = 1,2, 3), if the internal motions were to be described in greater
detail. However, in doing this, a much more complicated theory results than the dipolar theory. That theory
will also involve tripolar, quadrupolar and so on, velocities and forces. It is obvious that the increased
complexity of such a theory does not hold much hope for treating practical problems.
Further, from Egs. (4) and (5), one obtains

Z mpXpiUp; = mc,-éj + [ikvjkv (6)
where
Iik = ZmPXPz‘XPk (7)

Eq. (7) shows that the quantities /; depend upon the ‘arrangement’ of the masses of sub-particles within the
volume of the material particle.
In view of the above, the kinetic energy of the material particle with volume V is decomposed now as

llkvtjvtlm (8)

1 |
7" =5 ZmPUP[UH = méici+ 5
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or, equivalently (due to (3), (5) and (7)), as

T(V>:lmé-é+l/i'-i'dm. 9)
2 2 Jy

Finally, we consider the case of a homogeneous continuum with couple-stresses. The assumption of
homogeneity is a rather standard one in recent studies applying the Mindlin—-Green—Rivlin theory to
practical problems and implies that the relative deformation (i.e. the difference between the macro-dis-
placement gradient and the micro-deformation—cf. Mindlin, 1964) is zero and also that the micro-density
does not differ from the macro-density. The continuum is composed wholly of unit cells having the form of
cubes with edges of size 24 (h is therefore a characteristic dimension) and has mass density p. Then,
compatible with couple-stress effects is taking the material particles as ‘rigid’ so that the dipolar velocity v;;
above is replaced by an intrinsic angular velocity. In view of the above, the geometrically linear theory gives
the following expression for the kinetic-energy density (kinetic energy per unit macro-volume)

2

.. ph ..
Tfipu,-u,'+7a),-w,-, (10)

where u; are the components of the displacement of the material particle, w; = (1/2)e;0,u is the rotation
vector with e;; being the permutation symbol, and indicial notation is understood.

Next, we consider the /inear and angular momentum of the material particle. First, the linear momentum
of a macro-volume ¥ (ensemble of a number of micro-media) of the material is written as

LE/Vdm:/icdm, (11)
v v

which by virtue of (1) becomes
L = me. (12)

As promised before, we now prove that fVJ‘cdm = 0 and, therefore, that the ‘internal velocities’ do not
contribute to the linear momentum, i.e. [, vdm =0. The proof is simple and runs as follows: cm —
cf,dn=0< [, xdn— [,ecdn=0«= [ (x—¢)dm=0+<= [, xdm=0.

In addition, the angular momentum about the coordinate origin is written as

H[°1;/V(xxv)dm:/y[(c+x)xv]dm:cx/Vvdm+/V(xxv)dm;(ch)+HM, (13)

where H denotes the angular momentum about the mass center of the material particle.

As for the forces acting on the material particle and the sub-particles, along with the resultant force
F = > Fp, the moments Fj; = Y FpXp;, Fiju = D FpXpiXp, etc. can be considered so that, by virtue of (5), the
mechanical power is written as .# = ) Fpop = Fé; + Fv; + Fivye + - - - In this way, the so-called multi-
polar forces (Fj;, Fiu, . ..) are introduced as coeflicients representing higher-order forces in the expansion of
the mechanical power ..

Finally, in view of the foregoing discussion, the momentum balance laws for a control volume (consisting
of a number of macro-media) of the body can easily be derived. Indeed, for a control volume CV with
surface S, the balance laws for the linear and angular momentum within the geometrically linear theory read

/ 7" dS + / Fd(CV) = / pii;d(CV), (14)
S (O\% CvV

/ (ijk(n) e+ Mi(")) ds + / (x;Frein + C;)d(CV)
S Ccv

2
:/ pxjuke,/kd(CV)—l—/ &a/ukel/kd(CV% (15)
cv ‘ cv 370
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where T,-(") is the surface force per unit area (force traction), F; is the body force per unit volume, M,-(") is the
surface moment per unit area (couple traction), C; is the body moment per unit volume, () denotes now
0( )/0t, and x; are the components of the position vector of each material particle with elementary volume
d(CV). The second term in the RHS of (15) represents the effect of micro-inertia.

2.2. Stresses, equation of motion and constitutive relations

Next, pertinent force-stress and couple-stress tensors are introduced by considering the equilibrium of the
elementary material tetrahedron and enforcing (14) and (15), respectively. The force-stress or total stress
tensor ¢;; (which is asymmetric) is defined by

T(n) = 0;inj, (16)

1

and the couple-stress tensor y; (which also is asymmetric) by
M(n) = H;inj, (17)

where n; are the direction cosines of the outward unit vector n, which is normal to the surface. In addition,
just like the third Newton’s law T™ = —T™ is proved to hold by considering the equilibrium of a material
‘slice’, it can also be proved that M™ = —M"™. The couple-stresses w; are expressed in dimensions of
[force][length]~'. Further, o;; can be decomposed into a symmetric and an anti-symmetric part

0y = Ty + oy, (18)

with 7;; = 7;; and &;; = —a;, whereas it is advantageous—as will become clear below—to decompose y;; into
its deviatoric ,ug)) and spherical ,u,(.f) part in the following manner

iy = My + 30k (19)

where m;; = uij), ,uf.js) = (1/3)d;p> and J;; is the Kronecker delta.
Now, with the above definitions in hand and with the help of the divergence theorem, one may obtain the
stress equations of motion. Thus, Eq. (15) leads to the following moment equation

2

h” ..
Oipy; + omeyr + C; = pTakuieijk; (20)

which can also be written as

1 1 n
Eaiﬂilejkl + o + 5 Ciejn = %amunenimejikv (21)
since by its definition the anti-symmetric part of stress is written as & = —(1/2)I x (¢ x I), where I is the

idemfactor (i.e. the dyadic representation of the Kronecker delta). Also, Eq. (14) leads to the following
force equation

0,0 + F = piiy, (22)
or, by virtue of (18), to the equation

Further, combining (21) and (23) yields the single equation

1 1 Lph
aj’L'jk - E@»@uﬂeﬂd + F}( - EajClejk, = pu, — Tﬁjjuk. (24)
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Finally, in view of Eq. (19) and by taking into account that curl(div((1/3)d;u)) = 0, i.e. that the curl of

the divergence of a spherical tensor vanishes, we write (24) as
1 1 L PR

Otk = 5 0,0maej + Fi — 50,Cieju = pie — == Oy (25)
Eq. (25) is therefore the single equation of motion. It should also be noticed that, within the present theory
and in the general inertial case, the total stress tensor o;; is not an objective quantity since Eqs. (18) and (21)
imply that ¢;; contains acceleration terms, which are non-objective of course. Body forces and body couples
are also non-objective quantities. On the other hand, o; and p; should be objective because these are
related by (16) and (17) with the surface loads, which are objective quantities. The foregoing difficulty—
identified by Eringen (1968) among others—can be circumvented by the following suggestion of Jaunzemis
(1967, p. 233). To render g objective, oy in (21) is taken objective by assuming that there exists an effective
body couple defined as the difference [(ph®/3)d,ituenimesic — (1/2)Creju] that is objective, although none of
the two quantities in the brackets is objective. Of course, one may be opposed to the previous argument but
cannot object to the fact that in the absence of body couples and in particular (but still useful) cases of the
theory, like the quasi-static case and the time-harmonic steady-state dynamic case, o;; becomes objective.
Indeed, in the quasi-static case the acceleration terms are zero, whereas in the time-harmonic case (which
is used below to analyze the problem of Rayleigh-wave motions) the accelerations i, in the plane-strain case
(now k = (1,2)) become —w’u;(x;,x,) through Eq. (35a,b)—see next section. It is noticed that w is
the frequency and the time is factored out through the common term exp(—iw¢) multiplying every quantity
in a time-harmonic response. Therefore, non-objective quantities do not appear in the case of interest
here.

In light of the above discussion, one may view the general transient theory as a vehicle to arrive at specific
cases of interest, without omitting micro-structure effects, even if the general theory exhibits the foregoing
peculiarity. On the other hand, the constitutive equations obey the principle of objectivity in any case (cf.
Egs. (31)—(33) below).

As for the kinematical description of the continuum, the following quantities are defined

8,‘] = %(aju,- + a,'uj), (26)
W = %(aiuj - aj“i)a (27)
w; = %eijkajUk, (28)
Kij = aiwja (29)

where ¢;; is the strain tensor, w; is the rotation tensor, w; is the rotation vector, and k;; is the torsion-flexure
tensor (i.e. the gradient of the rotation or the curl of the strain) expressed in dimensions of [length]~!.
Notice also that (29) can alternatively be written as

_ 1 _ .
Kij = jejklaiaku/ = ejk[akéli- (30)

We notice, in addition, that x; = 0 because x; = 0;0; = (1/2)e;u; = 0 (where the latter equality is true
due to the skew-symmetry of the permutation symbol) and, therefore, that k;; has only eight independent
components. The tensor «;; is obviously an asymmetric tensor.

It is time now to introduce the constitutive equations of the theory by assuming the following isotropic
expression for the potential-energy density W. This expression involves four different material constants
and it reads

W = I/V(8l‘j7 K,'j) = %)»81','8]*]* —+ ,Llﬁijﬁij + znkijkij + 27],Kinji; (31)
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where (4, u,n,7') are the material constants. Eq. (31) leads to the constitutive equations
ow

‘L','j = G(ij) == ié,‘jﬁkk + 2#8,:]', (32)
681'j
ow
" By Anki; + 4K (33)

In view of the above, the moduli (4, ) have the same meaning with the Lamé constants of the clas-
sical elasticity theory, whereas the moduli (17,#') account for the couple-stress effects of the material be-
havior.

Finally, the following points are of notice. (i) The form in (31) stems from the more general form of the
first law of thermodynamics for a continuum with couple-stresses pE = 7€ + (1/2)myje 4,01, Where E is
the internal energy per unit mass. (ii) The couple-stress moduli (17, 7') are expressed in dimensions of [force].
(iil) Since x; = 0, m; = 0 is also valid and therefore the tensor m,; has only eight independent components.
(iv) The scalar (1/3)p, of the couple-stress tensor y,; does not appear in the final equation of motion and
in the constitutive equations either. Consequently, (1/3)u, is left indeterminate within the couple-stress
theory. In other words, the field y;; is unique except for an arbitrary additive (constant) isotropic couple-
stress field. (v) The following restrictions for the material constants should prevail as obtained by Mindlin
and Tiersten (1962) on the basis of a positive definite potential-energy density (the positive definiteness is, in
turn, a necessary condition for the uniqueness theorem to be proved—see e.g. Mindlin and Tiersten, 1962
and Mindlin and Eshel, 1968)

/

3.420>0, u>0, >0, —1<%<1. (34a,b,c,d)

3. Plane-strain time-harmonic dynamical response

In order to analyze wave motions, we consider the following two-dimensional time-harmonic response of
a linearly elastic isotropic body characterized by micro-structure and couple-stress effects. The body oc-
cupies a domain in the (x = x;,y = x,)-plane and is under conditions of plane strain. For the analysis of
Rayleigh waves, we consider as an appropriate domain the half-space y > 0 having as a boundary the plane
(x,z = x3). Then, we have

uc(x, . 1) = u(x,y) - exp(—iwt), u,(x,y,t) =u,(x,y) - exp(—iwt), wu, =0, (35a,b,c¢)

where (u,, u,, u.) are the displacement components, i = (—1)1/ ?_tis the time, and o is the frequency. In what
follows, as is standard in time-harmonic problems, it is understood that all field quantities are to be
multiplied by the factor exp(—iw¢) and that the real part of the resulting expression is to be taken. Below,
we derive the field equations of the problem and then uncouple them by using Lamé potentials.

First, the components of the force-stress and couple-stress tensors will be obtained. The independence
upon the coordinate z of all components of force-stress and couple-stress tensors, under the assumption
(35¢), was proved by Muki and Sternberg (1965). Indeed, it is noteworthy that, contrary to the respective
plane-strain case in the conventional theory, this independence is not obvious within the couple-stress
theory. Notice further that except for w, and (k.., k,.) all other components of the rotation vector and the
torsion-flexure tensor identically vanish, in the particular case of plane-strain considered here. The non-
vanishing components (ty,7Ty,7,,) and (m,,m,) follow from (32) and (33), respectively. Then,
(Obexs Oy, Oy, 0yy) are found from (21) and, finally, (6., 0.y, 0,x, 0,,) are provided by (18). Vanishing body
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forces and body couples are assumed in what follows. In view of the above, the following expressions are

written

mxz=2'1(
=21

Oy = Oy = 0,

Oy
Ox?

o%u,
Ox Jy

)
)

Qu,
Ox 6y

o%u,

0y?

N %_Gm +l Omy. Om,.
e ox Oy 2\ ox oy )’
Olxy Oy
ou Ou
A+2 + A2
(2+2u) 5 -+ 3
Ou, , Ou,
=(A+2u )ay +Aax,
([ Ou,  Ou, ,( Ou, Ouy Qu, u, Ou,  u,
O = H( dy  Ox ) lo ( ox Oy i ox3  Ox?0y Ox0y? Oy
([ Ou,  Ou, ,( Ou, Ou, Ou,  u, u, u,
Ty = H <a > ) o <ax > ) N\ oy Tmer o

(44)

)

where I = ph*/3 is the micro-inertia coefficient and one may notice also that the material constant 1’ does
not appear at all in the plane-strain equations. One may observe that all stresses given above are objective, a

fact that is in accord with the relative discussion in the last section.

Next, the field equations of the problem will be obtained. The equation of motion (25) takes the form

0Tk

— (1/2)61-6,-mﬂejk; = puk

10;;ii, where the indices (i, j, k, [) take now the values 1 and 2 only. Further,

the second-order time derivatlves in view of (35), will become —w?u;(x,y), and the only surviving stresses
(Taxs Tays Tyy) and (my., m,.) will be provided by (32) and (36)—(37), respectively, in terms of the displacement
gradients. Therefore, in the case of a time-harmonic plane-strain response, the equation of motion leads to
the following system of coupled PDEs for the displacement components (u,, u,)

(42 )62% ) Qu, Qu, n Qu, oy d*u, *u, Ou, B
a2 axoy T M\axey T 92 a0y xR | axdys
o%u, u
_ 2 2 X x
= —pwu,+I1w <6x2 + % ),
2 2 2 2 4 4 4
u, 0”u, o'u,  Owu, 0%u, 0*u, 0%u,
P
(A4 2n )a > ey TH (8x6y+ e ) T avey  aoye Ty
o%u, 0%u
— 2 ] 2 Y Y
pwuy, + a)(az—i-ay )

otu,

oyt
(45)

T

Oox*
(46)
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Although the above system is much more complicated than that in the respective case of classical
elastodynamics (see e.g. Sternberg, 1960; Fung, 1965), uncoupling by the use of Lamé-type potentials still
proves to be successful. The potentials (¢, ) are defined in terms of the displacement components (u,, u,)
as

0 oY _ 0 oY
e = Ox + ay’ W= oy ox’ (47a,b)

and some tedious algebra leads to the following uncoupled PDEs, which are the field equations of the
problem. The first PDE is of the second order but the second is of the fourth order, i.e.

(2 + 21— 1)V + po?]p = 0, (48)
V" = (1 = 10*)V? = po?]y = 0, (49)
where
o> ot ot ot
o 4 — 4 = 2——t——. 50a,b
v ox? + 02’ v ot + ox20y? oyt (502, b)
Finally, introducing the following quantities
Iw? Iw? pw’ pw’
—1— , =1—-—, K =- . k=", 5la,b,c,d
8L P+ 2 8r 1 LT 2 T I ( )
permits writing (48) and (49) under the compact forms
aVie+kid =0, (52)
(/WYY — grV — kg = 0, (53)

where the coefficient (17/p) of the operator with the highest order in (53) has dimensions of [length]. Since
(n/1) — 0 in the case of classical elasticity, the very form of (53) reveals the singular-perturbation character
of the couple-stress theory and the emergence of associated boundary-layer effects. It is expected therefore
that the influence of couple-stresses hinges crucially on the relative size of the characteristic length-
parameter (1/ u)l/ %It is reminded that one of the goals of the present work is to provide means for esti-
mating the relation between (1/ ,u)l/ * and the size of the material unit-cell 2. It is also noticed that in the
case g; = 1 (i.e. when the micro-inertia is absent), (52) becomes identical to the Helmholtz PDE governing
the longitudinal time-harmonic motions within classical elastodynamics. On the other hand, unlike the
corresponding case of shear motions within classical elastodynamics, Eq. (53) being it a fourth-order PDE

shows that wave signals emitted from a disturbance point propagate at different velocities (see e.g. Chester,
1971).

4. General transformed solutions and the dispersion equation for Rayleigh waves
The two-sided Laplace transform is utilized to suppress the x-dependence in the field equations and
boundary conditions in the half-space domain (—oo < x < 00,y > 0) and to lead to general solutions for

the potentials in the complex domain. The direct and inverse transforms are defined as follows (see e.g.
Bracewell, 1965)

£ (py) = /fxye’”dx fxy) = /f(;»yel’*dp, (54a,b)
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where Br denotes the Bromwich inversion path within the region of analyticity of the function f*(p,y).
Transforming Eqs. (52) and (53) with (54a) gives the following ODEs

dzd)* 2 2 *
ng_yz +(gp” + k)" =0, (55)
n dty’ n &y (n .
u e T <2up2 —gr> ot pp“ —gp’ — kg Y =0, (56)
and, further, the general transformed solutions for y > 0
d)*(pvy) :Al(p) ! exp(_ﬁLy)v (57)
¥ (p,y) = A2(p) - exp(—Bry) + 43(p) - exp(—yr), (58)
where
) 24\1/2 . kL
= B L = —’ 5
pr=1ip" +o0;) with o o172 (59a,b)
L
1/2
s (g7 +4(n/wik)'"” — gr
pr=ilp~+o7)’", with or= /)" ) (60a,b)
1/2 1/2
PR N VZ R, _ g7 +4(/wkz) " + gr]
T — - 9 - ) )
yr = (17 —p°) with 77 (6la,b)

@2n/w)'"?

and the functions (4;,4,, 43) are yet unknown functions (amplitude functions), which can be determined in
each specific problem through the enforcement of boundary conditions.

A point also that deserves attention is the introduction of the branch cuts for the functions (5, , fr, y7) in
the complex p-plane, in such a manner that a bounded solution at y — oo is always secured (i.e. in order for
the functions to have positive real parts). Any inversion then of the type (54b) should be performed by
considering the appropriate restrictions in the cut plane. Fig. 3 shows the branch cuts of the functions
(Br,yr) for all frequencies and the branch cuts of the function 5, for those frequencies resulting only in
real g, (the latter condition requires that g, > 0). In the case that g; < 0, , in (59a) takes the form f, =
(a7 —p)"?, where o, = k;/(|g.|)"/?, and the branch cuts for f, will be along the intervals (o, <|Re(p)| <
oo, Im(p) = 0) (i.e. the cuts will resemble the ones for y;). At the frequency yielding g, = 0, we have a
change of the character of the PDE in (52) from a standard Helmholtz equation (when g; > 0) to a modified
Helmholtz equation (when g; < 0). However, when material constants for usual solids are employed, the
latter case occurs at extremely high frequencies. Finally, Fig. 3 also exhibits the behavior of the functions
(B, Br,yr) in the complex p-plane.

The criterion now for surface Rayleigh waves is that the displacement potentials decay exponentially with
the distance y from the half-space surface (Knowles, 1966; see also Brock, 1998 for a general discussion of
surface waves within the classical elasticity theory). In view of the previous analysis leading to (57) and (58),
we explore the possibility of progressive-wave solutions to (25) having the following form of a distinct
harmonic component

by(x,9,1) = A1 (p) - exp(—|B,[y) - exp(px) - exp[~iw(p) - 1] = ¢;(p,y) - exp(px) - exp[—i(p) - {]
= ¢,;(q,y) - explig(x — Cpnt)], (62)
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i Im(p)

+|Bsl || -1ms1
+i[p5] o) il
-igj Re(p)
-Ipsl || 185l
i Im(p)
lvsl
+|vj -ilvil
Ailygl T Hll Re(p)
lvi|

Fig. 3. Branch cuts for the functions (f,, 7, 7). The index j takes the values (L, T).

W, (x, 3, 1) = {42(p) - exp(=|fr]y) + 43(p) - exp(=[77[y)} - exp(px) - exp[—iw(p) - ]
= ¥(p,y) - exp(px) - exp[—ia(p) - ] = ¥ (¢,») - explig(x — Cpnt)], (63)

where (4,,4,,43) represent arbitrary amplitude functions denoting the relative dominance of a particular
harmonic component, the propagation wavenumber ¢ = (p/i) is taken to be a real quantity, C,, = @/q is
defined as the phase velocity of the Rayleigh waves, and (f3,, f,y7r) defined in (59a), (60a) and (61a) are
taken to be real and positive functions. The latter restriction is satisfied if and only if 67 < |¢| and o7 < |g].
Taking a real wavenumber excludes the possibility of localized standing waves (i.e. leaky or evanes-
cent motions), whereas the frequency at which the wavenumber (for a particular mode) changes from
real to imaginary (or complex) values is the cut-off frequency. Finally, we notice that a general Rayleigh
surface-wave solution (synthesis) can be derived from (62) and (63) as the following Laplace inversion
integrals

d’t (p7y)epxe71w(p)»t dpa lp(xa Vs t) = 2_ lp: (p7y)epxeﬂw(p)-t dp
T

L Jpr

1
¢(x’ya t) = i

T Br
Next, the appropriate traction-free boundary conditions are considered for unforced Rayleigh-wave
propagation. These follow from Egs. (16) and (17) as
0,(%,y=0)=0, o0,(xy=0)=0, m.(x,y=0)=0. (64a,b,c)
In view now of the constitutive relations in (37), (42) and (43), the definition of the Lamé potentials in (47)
and the properties of the two-sided Laplace transform, the above equations provide

& (py=0 dy’*(p,y =0
42 IS0y W=D gy —0) o (652)
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2 g _ * —
(n—10) LY (g’yf_ N P (pc’li_ D (= 159 (3 = 0
4 4% _ 2% —
n(Wer‘*l/,*(p,yonpz(W) =0, (65b)
dw*(g)’; =0) 4 dlp*(pé; =0) _o. (65¢)

Further, introducing the general solutions (57) and (58) in Eq. (65), one obtains the following system of
three equations in the three unknowns (4, 4,,43)

{9 + (74 201341 (p) + 2upBrAs(p) + 2upyrAs(p) = 0, (66a)
— 2pB,41(p) + {—(n/w) (B + 270" + p*) — P’gr + B + Br U’ /1) } 4> (p)

+{=/w) (&} +2970” + ') — Pgr + 77 + 73(Iw* /1) }45(p) = 0, (66b)
Br(p* + B7)A2(p) + 71(P” + v7)43(p) = 0. (66¢)

With the understanding that the zero RHS in each of the above equations could be replaced by appropriate
transformed expressions, Egs. (66) may serve for the solution to general traction boundary-value-problems
involving forced motions and not only Rayleigh-type free motions.

If, additionally, the wavenumber ¢ is introduced (as defined above) and the expressions |f;|=
(4?2 — 62)'* (g, > 0 case), |B;| = (¢ UT)I/Z and |y;| = (2 4 ¢*)'* (with ¢ being real and such that ¢, < |g|
and o7 < |q|) are used in (66), the following system is obtained

[—207 + 2u(q* — o2))A1(q) + [2uq(q* — 03)*)idx(q) + [2ug(q* + ©3)]ids(g) = 0, (67a)
[—2q(¢* — 07)"*)idi(q) + [ (n/w)ot + ¢’gr + (¢* — o7) (1 + 7)]/12((1)
4 2 2 2 Io?® _
| = /et + e+ (g +rT>(1 +7)}A3<q> ~o, (67b)

[~07(q” — 07)"*42(q) + 57" + 7)) 4s(q) = . (67¢)

In the case g; < 0, the expression (¢> — aL)l/ * for |B,| will be replaced by (¢* + ai)l/ * in Egs. (66).

The vanishing now of the determinant of the coefficients of the unknowns (eigenvalue problem) provides
the dispersion equation for the propagation of Rayleigh waves in a micro-structured material characterized
by couple-stress elasticity

[—24(q* — 02)'*)[~ 03 (q* — 03)" ) 2ug(q + 3)"*] = [=24(4* — o) |2 (* + 3) ] 2nq(g* — 03)'7]

— (i} +2u(q* — oD)[FH(q” + )] [ — (n/wor +q¢r + (¢ — 07) (1 + I%)}
#1104 20l = -~ )R] = /e + P+ @+ ) (14 ’%)} —0. (68)

The above equation is complicated and does not yield even to modern programs of symbolic algebra (e.g.
MATHEMATICA™). Numerical results were therefore derived through solving the dispersion equation
numerically by techniques of root bracketing and root finding with bisection (Brent’s method—see e.g.
Press et al., 1986). This requires a rather elaborate FORTRAN programming though.
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5. Numerical results and concluding remarks

Here, we give some representative results in the form of dispersion curves. To this end, the following
normalizations are employed for, respectively, the dimensionless wavenumber and the dimensionless fre-
quency

h
_ 1/2 _
=n/u , Wg= , 69a,b
9= (0/0)'"0. 00 =St (69, )

whereas the shear-wave velocity of the medium in the absence of couple-stress and micro-structure effects
Vr = (n/ p)l/ ? is utilized to conveniently normalize the phase velocity of the Rayleigh waves Cpp.

The dispersion curves depicted in the graphs of Figs. 4-9 were obtained by using the properties of a
closed-cell polymethacrylimide material exhibiting micro-structure. These properties are given by Anderson

W 1
h=3.25x10"m

08 -

0.6 | n=0.05 p b’
n=0.1 ph’

2

04 F =02 p h2

n=0.5ph
- 2
02 | e
/ n=4ph
0 1 1
0 0.2 0.4 0.6

qq

Fig. 4. Dispersion curves for Rayleigh waves showing the variation of the normalized frequency w,; with the normalized wavenumber
qa for a closed-cell polymethacrylimide material exhibiting micro-structure. Graphs for six different relations between the couple-stress
modulus 7 and the characteristic material length /4 are presented.

C/Vr 14
12 + h=3.25x10*m

1 -

0.8

0.6

04 F  n=02ph’

n=0.1 ph’
0.2 2
1n=0.05p h
0 1 1 1 1
0 0.2 04 0.6 0.8 1

(0]

Fig. 5. Dispersion curves for Rayleigh waves showing the variation of the normalized phase velocity Cp,/Vr with the normalized
frequency w, for a closed-cell polymethacrylimide material exhibiting micro-structure. Graphs for six different relations between the
couple-stress modulus # and the characteristic material length / are presented.
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Cy/Vy 14
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0 1 1
0 0.2 04 0.6
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Fig. 6. Dispersion curves for Rayleigh waves showing the variation of the normalized phase velocity Cp,/Vr with the normalized
wavenumber g, for a closed-cell polymethacrylimide material exhibiting micro-structure. Graphs for six different relations between the
couple-stress modulus # and the characteristic material length / are presented.
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Fig. 7. wy vs. g dispersion curves for the relations = 0.05uA> and 5 = 0.1uh?.

and Lakes (1994) as A = 99.03 x 10° Pa, u = 285 x 10° Pa, v = 0.13 (Poisson’s ratio), p = 0.38 gr/cm?® and
h = 3.25 x 10~* m. In order to compare the form of the dispersion curves obtained by the present analysis
with the form of the dispersion curves provided by atomic-lattice calculations, we consider several relations
between the couple-stress modulus # and the intrinsic material length 4. These relations vary from n = 4uh?
to y = 0.05uh?. Also, we focus attention only to results derived for high frequencies.

Figs. 4 and 7 clearly show that the graph of w, as a function of ¢, is no longer a straight line in most of
the cases and, therefore, the Rayleigh waves are dispersive. The same conclusion is reached, of course, by
observing Figs. 5, 6, 8 and 9, which exhibit the fact that the phase velocity depends upon the frequency and
the wavenumber. On the other hand, it may be concluded from the results of Figs. 5 and 6 that the choices
n = 4puh® and n = ph? are rather irrelevant since they lead to Rayleigh-wave propagation speeds higher than
or equal to the speed V; = (u/ p)l/ 2. This phenomenon was never detected in experiments. Between the
remaining cases now, the relations # = 0.1uA”> and 5 = 0.05uh? seem to be appropriate since the dispersion
curves they generate (see Figs. 4, 7-9) are close in form to available atomic-lattice calculations (see e.g.
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Fig. 8. Cpn/Vr vs. w, dispersion curves for the relations 1 = 0.05u4?and 7 = 0.1uh?.
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Fig. 9. Con/Vr vs. qq dispersion curves for the relations 7 = 0.05u4% and 5 = 0.1ph%.

Gauzis et al., 1960). Certainly, availability of experimental measurements for a specific material with micro-
structure will allow for more accurate estimates of the value of the couple-stress modulus . We emphasize
that the purpose of the comparisons above was just to indicate a means to determine the micro-structural
parameter 7.

Finally, Fig. 10 shows two dispersion curves derived for a material with constants (1, u, p) as given before
and n = 1.5051 N. For the purpose of comparison again, in the first case # = 3.25 x 10~* m was taken,
whereas in the second 4 = 0 was set. The latter case concerns a material without micro-structure and the
corresponding dispersion curve exhibits an initial part, which is concave up. This finding agrees with the
results of Ottosen et al. (2000) showing that the Rayleigh-wave velocity will exceed the shear-wave velocity.
As mentioned before, this result is not satisfactory. In addition, the form of the dispersion curve for 2 =0
does not agree with that obtained by atomic-lattice calculations (see e.g. Gazis et al., 1960). Therefore, the
present results demonstrate that the material micro-structure is a necessity for a satisfactory simulation of
dispersion curves obtained by the atomic-lattice approach.

In conclusion, the main goals of the present work were: (i) to derive in a simple manner basic theoretical
results concerning combined couple-stress and micro-structure effects, (ii) to prove that the couple-stress
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Fig. 10. Two dispersion curves of the type w, vs. g, for the cases # = 3.25 x 10~* m (material with micro-structure) and 4 = 0 (material
without micro-structure). The couple-stress modulus is # = 1.5051 N and the constants (4, u, p) are those of the closed-cell poly-
methacrylimide material.

elasticity theory with micro-structure does predict dispersive Rayleigh waves at high frequencies, and (iii) to
indicate that comparing the form of dispersion curves obtained by the present approach with the form
obtained experimentally or by the discrete particle theory may determine the relation between the couple-
stress modulus # and the size of the unit cell /4 of the micro-structured material. Our study shows that the
use of the couple-stress elasticity theory with micro-structure in the problem of Rayleigh waves extends the
range of applicability of continuum theories. This is a step in the efforts towards bridging the gap between
classical (monopolar) theories of continua and theories of atomic lattices.

Acknowledgements

Financial support of this work under the ‘Thales’ program of the NTUA is acknowledged with thanks.
Also, the authors are thankful to Professors I. Vardoulakis (NTU Athens, Greece) and N. Aravas (Uni-
versity of Thessaly, Greece) for discussions on generalized continuum theories, and to the reviewers of the
paper for their helpful comments.

References

Amanatidou, E., Aravas, N., 2001. Finite element techniques for gradient elasticity problems. Proceedings of the Sixth National Greek
Congress of Mechanics, vol. I, pp. 149-154; see also Amanatidou, E., Aravas, N. Mixed finite element formulations of strain-
gradient elasticity problems. Comp. Meth. Appl. Mech. Engng., 191, 1723-1751.

Anderson, W.B., Lakes, R.S., 1994. Size effects due to Cosserat elasticity and surface damage in closed-cell polymethacrylimide foam.
J. Mater. Sci. 29, 6413-6419.

Bardet, J.P., Vardoulakis, 1., 2001. The asymmetry of stress in granular media. Int. J. Solids Struct. 38, 353-367.

Bogy, D.B., Sternberg, E., 1967a. The effect of couple-stresses on singularities due to discontinuous loadings. Int. J. Solids Struct. 3,
757-770.

Bogy, D.B., Sternberg, E., 1967b. The effect of couple-stresses on the corner singularity due to an asymmetric shear loading. Int. J.
Solids Struct. 4, 159-174.

Bracewell, R., 1965. The Fourier Transform and Its Applications. McGraw-Hill, New York.

Brock, L.M., 1998. Analytic results for roots of two irrational functions in elastic wave propagation. J. Aust. Math. Soc., Ser. B 40, 72—
79.



H.G. Georgiadis, E.G. Velgaki | International Journal of Solids and Structures 40 (2003) 2501-2520 2519

Chen, J.Y., Huang, Y., Ortiz, M., 1998. Fracture analysis of cellular materials: a strain gradient model. J. Mech. Phys. Solids 46, 789—
828.

Chester, C.R., 1971. Techniques in Partial Differential Equations. McGraw-Hill, New York.

Cosserat, E., Cosserat, F., 1909. Theorie des Corps Deformables. Hermann et Fils, Paris.

Dally, J.W., Thau, S.A., 1967. Observations of stress wave propagation in a half-plane with boundary loading. Int. J. Solids Struct. 3,
293-308.

Day, F.D., Weitsman, Y., 1966. Strain-gradient effects in microlayers. ASCE J. Engng. Mech. 92, 67-86.

Eringen, A.C., 1968. Theory of micropolar elasticity. In: Liebowitz, H. (Ed.), Fracture—An Advanced Treatise. Academic Press,
New York, pp. 621-729.

Farnell, G.W., 1978. Types and properties of surface waves. In: Oliner, A.A. (Ed.), Acoustic Surface Waves. Springer-Verlag, Berlin,
pp- 13-60.

Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W., 1994. Strain gradient plasticity: theory and experiment. Acta Metall.
Mater. 42, 475-487.

Fung, Y.C., 1965. Foundations of Solid Mechanics. Prentice Hall, Englewood Cliffs, NJ.

Gazis, D.C., Herman, R., Wallis, R.F., 1960. Surface elastic waves in cubic crystals. Phys. Rev. 119, 533-544.

Georgiadis, H.G., 2000. Exact analysis of crack-tip fields in gradient-elastic anti-plane shear deformation. In: Katsikadelis, J.T.,
Beskos, D.E., Gdoutos, E.E. (Eds.), Proceedings of the International Symposium on Recent Advances in Mechanics (in honor of
Professor and Academician A.N. Kounadis). Athens, pp. 263-272.

Georgiadis, H.G., Vardoulakis, I., 1998. Anti-plane shear Lamb’s problem treated by gradient elasticity with surface energy. Wave
Motion 28, 353-366.

Georgiadis, H.G., Vardoulakis, I., Lykotrafitis, G., 2000. Torsional surface waves in a gradient-elastic half-space. Wave Motion 31,
333-348.

Georgiadis, H.G., Vardoulakis, I., Velgaki, E.G., 2002. Dispersive Rayleigh-wave propagation in microstructured solids characterized
by dipolar gradient elasticity, J. Elasticity, submitted for publication.

Green, A.E., Rivlin, R.S., 1964. Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17, 113-147.

Huang, Y., Zhang, L., Guo, T.F., Hwang, K.C., 1997. Near-tip fields for cracks in materials with gradient effects. In: Willis, J.R. (Ed.),
Proceedings of the [IUTAM Symposium on Nonlinear Analysis of Fracture. Kluwer Academic Publishers, Netherlands, pp. 231-
243.

Jaunzemis, W., 1967. Continuum Mechanics. MacMillan, New York.

Knowles, J.K., 1966. A note on elastic surface waves. J. Geophys. Res. 71, 5480-5482.

Koiter, W.T., 1964. Couple-stresses in the theory of elasticity. Parts I and II. Proc. Royal Netherlands Acad. Sci., Ser. B LXVII (67),
17-44.

Kroner, E., 1963. On the physical reality of torque stresses in continuum mechanics. Int. J. Engng. Sci. 1, 261-278.

Lakes, R.S., 1982. Dynamical study of couple stress effects in human compact bone. ASME J. Biomech. Engng. 104, 16-21.

Lakes, R.S., 1995. Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. In: Miihlhaus,
H.-B. (Ed.), Continuum Models for Materials with Microstructure. John Wiley and Sons, Chichester, pp. 1-25.

Lubarda, V.A., Markenscoff, X., 2000. Conservation integrals in couple stress elasticity. J. Mech. Phys. Solids 48, 553-564.

Mindlin, R.D., 1964. Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51-78.

Mindlin, R.D., Eshel, N.N., 1968. On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109-124.

Mindlin, R.D., Tiersten, H.F., 1962. Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415-448.

Muki, R., Sternberg, E., 1965. The influence of couple-stresses on singular stress concentrations in elastic solids. ZAMP 16, 611-618.

Ottosen, N.S., Ristinmaa, M., Ljung, C., 2000. Rayleigh waves by the indeterminate couple-stress theory. Eur. J. Mech. A/Solids 19,
929-947.

Papamichos, E., Vardoulakis, I., Miihlhaus, H.-B., 1990. Buckling of layered elastic media: a Cosserat-continuum approach and its
validation. Int. J. Numer. Anal. Meth. Geomech. 14, 473-498.

Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., 1986. Numerical Recipes. Cambridge University Press, Cambridge.

Sternberg, E., 1960. On the integration of the equations of motion in the classical theory of elasticity. Arch. Ration. Mech. Anal. 6,
34-50.

Suhubi, E.S., Eringen, A.C., 1964. Nonlinear theory of micro-elastic solids—II. Int. J. Engng. Sci. 2, 389-404.

Vardoulakis, I., Sulem, J., 1995. Bifurcation Analysis in Geomechanics. Blackie Academic and Professional (Chapman and Hall),
London.

Vardoulakis, 1., Georgiadis, H.G., 1997. SH surface waves in a homogeneous gradient-elastic half-space with surface energy.
J. Elasticity 47, 147-165.

Voigt, W., 1887. Theoretische Studien uber die Elasticitatsverhaltnisse der Krystalle. Abh. Ges. Wiss. Gottingen, 34.

Wei, Y., Hutchinson, J.W., 1997. Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity.
J. Mech. Phys. Solids 45, 1253-1273.



2520 H.G. Georgiadis, E.G. Velgaki | International Journal of Solids and Structures 40 (2003) 2501-2520

Weitsman, Y., 1965. Couple-stress effects on stress concentration around a cylindrical inclusion in a field of uniaxial tension. ASME J.
Appl. Mech. 32, 424-428.

Weitsman, Y., 1967. A note on singularities in a Cosserat continuum. Qly. Appl. Math. 25, 213-217.

White, R.M., 1970. Surface elastic waves. Proc. IEEE 58, 1238-1276.



	High-frequency Rayleigh waves in materials with micro-structure and couple-stress effects
	Introduction
	Basic concepts and equations
	Kinetic energy and momentum balance laws
	Stresses, equation of motion and constitutive relations

	Plane-strain time-harmonic dynamical response
	General transformed solutions and the dispersion equation for Rayleigh waves
	Numerical results and concluding remarks
	Acknowledgements
	References


